Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities

Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities

  • 1.

    Nesheim, M. C., Oria, M. & Yih, P. T. (eds) A Framework for Assessing Effects of the Food System (National Academies Press, 2015).

  • 2.

    Ranganathan, J. et al. Shifting Diets for a Sustainable Food Future (World Resources Institute, 2016).

  • 3.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Auestad, N. & Fulgoni, V. L. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv. Nutr. 6, 19–36 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Dekker, L. H. et al. Socio-economic status and ethnicity are independently associated with dietary patterns: the HELIUS-Dietary Patterns study. Food Nutr. Res. 59, 26317 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Darmon, N. & Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 87, 1107–1117 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Rehm, C. D., Peñalvo, J. L., Afshin, A. & Mozaffarian, D. Dietary intake among US adults, 1999–2012. JAMA 315, 2542–2553 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Wang, D. D. et al. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Inter. Med. 174, 1587–1595 (2014).

    Article 

    Google Scholar
     

  • 12.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. 114, E10301–E10308 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Hallström, E., Gee, Q., Scarborough, P. & Cleveland, D. A. A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems. Clim. Change 142, 199–212 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).

    Article 

    Google Scholar
     

  • 16.

    Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).

    Article 

    Google Scholar
     

  • 17.

    Perignon, M., Vieux, F., Soler, L. G., Masset, G. & Darmon, N. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 75, 2–17 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. https://doi.org/10.1016/j.jand.2012.12.016 (2013).

  • 19.

    Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans 2015–2020 (Government Printing Office, 2016).

  • 20.

    Liang, S. et al. Socioeconomic drivers of greenhouse gas emissions in the United States. Environ. Sci. Technol. 50, 7535–7545 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).

    Article 

    Google Scholar
     

  • 22.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Wu, X. D., Guo, J. L., Meng, J. & Chen, G. Q. Energy use by globalized economy: total-consumption-based perspective via multi-region input–output accounting. Sci. Total Environ. 662, 65–76 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Heller, M. C. & Keoleian, G. A. Greenhouse gas emission estimates of US dietary choices and food loss. J. Ind. Ecol. 19, 391–401 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Behrens, P. et al. Evaluating the environmental impacts of dietary recommendations. Proc. Natl Acad. Sci. USA 114, 13412–13417 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Hitaj, C., Rehkamp, S., Canning, P. & Peters, C. J. Greenhouse gas emissions in the United States food system: current and healthy diet scenarios. Environ. Sci. Technol. 53, 5493–5503 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kim, D., Parajuli, R. & Thoma, G. J. Life cycle assessment of dietary patterns in the United States: a full food supply chain perspective. Sustainability 12, 1586 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 109, 526–534 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73, 643–660 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    McNaughton, S. A., Ball, K., Crawford, D. & Mishra, G. D. An index of diet and eating patterns is a valid measure of diet quality in an Australian population. J. Nutr. 138, 86–93 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Malon, A. et al. Compliance with French nutrition and health program recommendations is strongly associated with socioeconomic characteristics in the general adult population. J. Am. Diet. Assoc. 110, 848–856 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Lallukka, T., Laaksonen, M., Rahkonen, O., Roos, E. & Lahelma, E. Multiple socio-economic circumstances and healthy food habits. Eur. J. Clin. Nutr. 61, 701 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 35.

    Northstone, K. & Emmett, P. Dietary patterns of men in ALSPAC: associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women’s dietary patterns. Eur. J. Clin. Nutr. 64, 978–986 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Harrington, J. et al. Sociodemographic, health and lifestyle predictors of poor diets. Public Health Nutr. 14, 2166–2175 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Hulshof, K., Brussaard, J., Kruizinga, A., Telman, J. & Löwik, M. Socio-economic status, dietary intake and 10 y trends: the Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 57, 128 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Global Environ. Change 49, 154–165 (2018).

    Article 

    Google Scholar
     

  • 39.

    Fisberg, R. M. et al. Dietary quality and associated factors among adults living in the state of São Paulo, Brazil. J. Am. Diet. Assoc. 106, 2067–2072 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article 

    Google Scholar
     

  • 41.

    Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134, 1793–1844 (2019).

    MATH 
    Article 

    Google Scholar
     

  • 42.

    Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob. Health 8, e59–e66 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Darmon, N., Lacroix, A., Muller, L. & Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int. J. Behav. Nutr. Phys. Act. 11, 66 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Johnson, D. S., Smeeding, T. M. & Torrey, B. B. Economic inequality through the prisms of income and consumption. Monthly Lab. Rev. 128, 11–24 (2005).


    Google Scholar
     

  • 46.

    America’s Shrinking Middle Class: a Close Look at Changes within Metropolitan Areas (Pew Research Center, 2016).

  • 47.

    Miller, R. E. & Blair, P. D. Input–Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).

  • 48.

    Ang, B. W., Zhang, F. & Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 23, 489–495 (1998).

    Article 

    Google Scholar
     

  • 49.

    Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).

    Article 

    Google Scholar
     

  • 50.

    Bowman, S., Clemens, J., Friday, J., Thoerig, R. & Moshfegh, A. Food Patterns Equivalents Database 2011–12: Methodology and User Guide (USDA, 2014).

  • 51.

    Trumbo, P., Schlicker, S., Yates, A. A. & Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 102, 1621–1630 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Macdiarmid, J. & Blundell, J. Assessing dietary intake: who, what and why of under-reporting. Nutr. Res. Rev. 11, 231–253 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Dodd, K. W. et al. Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J. Am. Diet. Assoc. 106, 1640–1650 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Zhang, S. et al. A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Ann. Appl. Stat. 5, 1456–1487 (2011).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 55.

    Tooze, J. A. et al. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat. Med. 29, 2857–2868 (2010).

    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 56.

    Freedman, L. S., Guenther, P. M., Krebs-Smith, S. M., Dodd, K. W. & Midthune, D. A population’s distribution of Healthy Eating Index-2005 component scores can be estimated when more than one 24-hour recall is available. J. Nutr. 140, 1529–1534 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Rodrigues, J. F. D., Moran, D., Wood, R. & Behrens, P. Uncertainty of consumption-based carbon accounts. Environ. Sci. Technol. 52, 7577–7586 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input–output models—a case study of the UK’s carbon footprint. Econ. Syst. Res. 22, 43–63 (2010).

    Article 

    Google Scholar